Structural determinants of phosphoinositide selectivity in splice variants of Grp1 family PH domains.
نویسندگان
چکیده
The pleckstrin homology (PH) domains of the homologous proteins Grp1 (general receptor for phosphoinositides), ARNO (Arf nucleotide binding site opener), and Cytohesin-1 bind phosphatidylinositol (PtdIns) 3,4,5-trisphosphate with unusually high selectivity. Remarkably, splice variants that differ only by the insertion of a single glycine residue in the beta1/beta2 loop exhibit dual specificity for PtdIns(3,4,5)P(3) and PtdIns(4,5)P(2). The structural basis for this dramatic specificity switch is not apparent from the known modes of phosphoinositide recognition. Here, we report crystal structures for dual specificity variants of the Grp1 and ARNO PH domains in either the unliganded form or in complex with the head groups of PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3). Loss of contacts with the beta1/beta2 loop with no significant change in head group orientation accounts for the significant decrease in PtdIns(3,4,5)P(3) affinity observed for the dual specificity variants. Conversely, a small increase rather than decrease in affinity for PtdIns(4,5)P(2) is explained by a novel binding mode, in which the glycine insertion alleviates unfavorable interactions with the beta1/beta2 loop. These observations are supported by a systematic mutational analysis of the determinants of phosphoinositide recognition.
منابع مشابه
Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains.
Pleckstrin homology (PH) domains are protein modules of around 120 amino acids found in many proteins involved in cellular signaling. Certain PH domains drive signal-dependent membrane recruitment of their host proteins by binding strongly and specifically to lipid second messengers produced by agonist-stimulated phosphoinositide 3-kinases (PI 3-Ks). We describe X-ray crystal structures of two ...
متن کاملThe Arl4 Family of Small G Proteins Can Recruit the Cytohesin Arf6 Exchange Factors to the Plasma Membrane
The small GTPase Arf6 regulates endocytosis, actin dynamics, and cell adhesion, and one of its major activators is the exchange factor Arf nucleotide-binding site opener (ARNO), also called cytohesin-2 [1, 2]. ARNO must be recruited from the cytosol to the plasma membrane in order to activate Arf6, and in addition to a Sec7 nucleotide-exchange domain it contains a C-terminal pleckstrin homology...
متن کاملSignaling complexes of the FERM domain-containing protein GRSP1 bound to ARF exchange factor GRP1.
GRP1 is a member of a family of proteins that contain a coiled-coil region, a Sec7 homology domain with guanosine nucleotide exchange activity for the ARF GTP-binding proteins, and a pleckstrin homology domain at the C terminus. The pleckstrin homology domain of GRP1 binds phosphatidylinositol (3,4,5) trisphosphate and mediates the translocation of GRP1 to the plasma membrane upon agonist stimu...
متن کاملPhosphoinositide specificity determines which cytohesins regulate β1 integrin recycling.
Recycling of internalized integrins is a crucial step in adhesion remodeling and cell movement. Recently, we determined that the ADP-ribosylation factor-guanine nucleotide exchange factors (ARF-GEFs) cytohesin 2/ARNO and cytohesin 3/GRP1 have opposing effects on adhesion and stimulated β1 integrin recycling even though they are very closely related proteins (80% sequence identity). We have now ...
متن کاملMolecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides.
More than 250 pleckstrin homology (PH) domains have been identified in the human proteome. All PH domains studied to date appear to bind phosphoinositides, most binding only weakly and non-specifically. Members of a small subclass of PH domains show both high affinity and specificity for particular phosphoinositides, and recent structural studies have provided detailed views of these specific i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 23 19 شماره
صفحات -
تاریخ انتشار 2004